SUMMARY OF LOW VOLTAGE FUSES | Fuse Type | Voltage | Ampere Rating | Interrupting Rating — kA | Mersen Part # | UL | |---------------------|--|--|--------------------------|---|--------| | Class CC | 600VAC
300VDC
600VDC | 0-30
0-30
0-30 | 200
100
100 | ATDR, ATQR, ATMR
ATDR, ATQR
ATMR | 248-4 | | Class G | 480/600VAC | 0-20/21-60 | 100 | AG | 248-5 | | Class H (Renewable) | 250/600VAC | 0-600 | 10 | RF/RFS | 248-7 | | Class H (Non-Renew) | 250/600VAC | 0-600 | 10 | NRN, CRN/NRS, CRS | 248-6 | | Class J | 600VAC
300VDC
500VDC | 0-600
0-30
0-600 | 200
100
100 | AJT, HSJ, A4J
A4J, HSJ(1-10)
AJT, HSJ(15-600) | 248-8 | | Class K-5 | 250/600VAC | 0-600 | 50 | OT, OTN/OTS | 248-9 | | Class L | 600VAC
500VDC | 601-6000
601-3000 | 200
100 | A4BQ, A4BY, A4BT
A4BQ | 248-10 | | Class RK1 | 250/600VAC
600VAC
250VDC
600VDC | 0-600
70-600
0-600
0-600 | 200
200
100
100 | A2D, A2K/A6D, A6K
A2D
A6D | 248-12 | | Class RK5 | 250/600VAC
300/600VDC | 0-600
0-30/35-400 | 200
20 | TR/TRS
TRS-RDC | 248-12 | | Class T | 300/600VAC
160/300VDC | 0-1200/0-800
0-1200 | 200
50/100 | A3T/A6T
A3T/A6T | 248-15 | | Glass/Electronic | 32-350VAC | 0-30 | Up to 10 | See Section MF | 248-14 | | Midget | 125/250VAC
500/600VAC | 0-30
0-30 | 0.2-10
10,100 | TRM, OTM, GFN
ATQ, ATM, SBS | 248-14 | | Cable Protector | 250VAC
600VAC | 1-500kcmil Cu or Al
#2-1000kcmil Cu or Al | 200
200 | 2CL
CP, CPH | 248-1 | | Capacitor | 600-5500VAC | 25-300 | Up to 200 | A100C-A550C | Other | | Welder | 600VAC | 100-600 | 200 | A4BX | Other | | Photovoltaic | | | | See Section MF | | ## FUSE CONSTRUCTION AND OPERATION The typical fuse consists of an element which is surrounded by a filler and enclosed by the fuse body. The element is welded or soldered to the fuse contacts (blades or ferrules). The element is a calibrated conductor. Its configuration, its mass, and the materials employed are selected to achieve the desired electrical and thermal characteristics. The element provides the current path through the fuse. It generates heat at a rate that is dependent upon its resistance and the load current. The heat generated by the element is absorbed by the filler and passed through the fuse body to the surrounding air. A filler such as quartz sand provides effective heat transfer and allows for the small element cross-section typical in modern fuses. The effective heat transfer allows the fuse to carry harmless overloads. The small element cross section melts quickly under short circuit conditions. The filler also aids fuse performance by absorbing arc energy when the fuse clears an overload or short circuit. When a sustained overload occurs, the element will generate heat at a faster rate than the heat can be passed to the filler. If the overload persists, the element will reach its melting point and open. Increasing the applied current will heat the element faster and cause the fuse to open sooner. Thus fuses have an inverse time current characteristic, i.e. the greater the overcurrent the less time required for the fuse to open the circuit.